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Size effects and ductile-brittle transition of 
polypropylene 
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The influence of specimen width on fracture parameters has been investigated. The range 
examined was sufficiently large to obtain ductile and brittle fractures. With reference to pre- 
viously published work, the phenomenology has been analysed by combining BCS model and 
Carpinteri's brittleness number approach. 

Nomencla ture  Mw 
a crack length Mn 
f(a/W) shape function according to ASTM speci- Mw/Mn 

fication [16] PM 
shape function according to Tada Paris nota- PF 
tion [21] Pe 
elastic modulus s 
plane strain fracture toughness V 
fictitious plane strain fracture toughness W 
plane stress fracture toughness ay 
J-integral at maximum load 
span 

F(a/W) 

E 
K~c 

Is 

L 

1. Introduct ion 
One of the central of problems of fracture mechanics 
is to obtain correct data for fracture toughness (Kc), 
critical strain energy release rate Gc or crack opening 
displacement (COD) for design. Unfortunately, very 
often the values obtained on a laboratory scale cannot 
be applied in failure prediction of larger structures. 
Even though polymers are rarely involved in large 
structures, there is a necessity to have fracture intrinsic 
parameters also for these materials. 

Results published to date on this subject have 
shown that [1-11]: 

1. Specimen thickness influences the Kc values of 
polymers as well as those of metals: the thicker the 
specimen is, the lower the fracture toughness Kc 
results will be. On the other hand, a lower bound to 
Kc, named "plane strain fracture toughness" K~c, 
does exist. The conditions (the same found for metals) 
to obtain K~c are 

B ~> 2.5 \--~--y ] (1) 

where B is the specimen thickness and ay is the yield 
stress in tension. 

2. If the previous relationship is not fulfilled, but 
LEFM is still valid, Kic can be obtained by extrapol- 
ation of the following formula 

= ~ �9 (2) 
7~r 

weight average molecular weight 
number average molecular weight 
polydispersity 
maximum load 
load of brittle fracture 
load of plastic collapse 
brittleness number 
machine cross speed 
specimen width 
yield stress 
strain rate 

where K[c is the fictitious Kic and Kic2 is the plane 
stress intensity factor. 

The works of Chan and Williams [12] and Hashemi 
and Williams [13] show that the specimen width must 
be 

W>~ 6.25 (KIc) 2 5 (Kic] z 
k a,--/ or k--~-y / (3) 

If this relationship is not satisfied, but LEFM is still 
valid, K~c can be derived using the Bilby-Cottrell- 
Swinden (BCS) model [13]. On the other hand, it 
remains unsolved to what extent it is possible to design 
against catastrophic failure based only on ductile data. 

With reference to their previously published paper 
[14] the authors examine such a problem combining 
the BCS model and Carpinteri's brittleness number 
approach [15]. 

2. Experimental  t e c h n i q u e s  
2.1. Materials 
The material examined was a polypropylene homo- 
polymer (PP). It was provided in slabs 100cm x 
200 cm x 4 cm. The main properties of this material 
are given in Table I. Three-point bend specimen were 
cut from the slabs (Fig. 1). The specimens were of 
different widths (0.5, 1, 2, 4, 8, 12cm) and the same 
thickness (4 cm). The shape ratio was L~ W = 4 where 
L is the span and W is the width. The loading velocity 
was controlled in order to obtain a constant strain rate 
i = 0.001 see -~. 
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T A B L E  I Physical characteristics of  PP 

Characteristics Method Unit  Data  

M-~ Light scattering - 7.0 x 10 5 

Mw/Mn GPC - 6.2 
"Melt  flow rate" ASTM D 1238 10 -1 g 0.46 
Young modulus  ASTM D 790 M N  m -2 1400 
Yield stress ASTM D 638 M N m  -2 33 
Density ASTM D 1505 c m - 3 g  0.912 

The following formula was used [13]: 

6 V W  
= L2 (4) 

2 
where V is the loading velocity or machine cross 
speed. 

For each value of W, five different relative crack 
depths were utilized: a/W = 0.1, 0.2, 0.3, 0.4.0.5. The 
tests were carried out at 23 ~ C. Table II shows the 4 
types of loading curve obtained. Except for the larger 
specimens (width 12cm), the fracture process was 
stable and very ductile, but no necking near the crack 
was noticed (Fig. 2). The plastic zone in front of crack 

8 
tip had a linear shape. 

2,2.  Stress intensity factor 
The fictitious fracture toughness was determined for 
all values of W according to the equation [16] 

PML 
I~ic = B ~ f ( a / W )  

f ( a / W )  = 2.9(a/W) 1/2 - 4.6(a/W) 3/2 

+ 2.18 (a/W) 5/2 (5) 

where PM is the maximum load, f ( a / W )  the shape 
factor according to ASTM specification and K~c the 
fictitious K~c (the material shows such a high ductility 
that LEFM cannot be correctly applied). 

Table III shows the data obtained by this formula 
and Fig. 3 shows the variation plotted against the 
specimen width in comparison to K~c data obtained by 
the Jlc approach. The procedure proposed by Rice et 
al. [17] was followed and the formula 

K~l C = ( J ( c E )  1/2 (a /W = 0.5) (6) 

was used. The following considerations should be 

T A B L E  II Types of experimental curves 

W(cm) a W Curve 

0.5 

12 

0.1 A 
0.2 A 
0.3 A 
0.4 A 
0.4 A 
0.5 A 

O.l A (A) 
0.2 A 
0.3 A 
0.4 A 
0.5 A 

0.1 A 
0.2 A 
0.3 A 
0.4 A 
0.5 A 

0.I A (B) 
0.2 A 
0.3 A 
0.4 A 
0.5 A 

0.1 B 
0.2 B 
0.3 B 
0.4 A 
0.5 A 

[cl 
0.1 C 
O.2 B 
0.3 B 
0.4 B 
0.4 A 

DISPLACEMENT 

I LOAD 

I?: 
I[ I 

DISPLACEMENT 
IL 

LOAD 

I 
I 

DISPLACEMENT 

drawn from this data: 

1. In both cases/tqr~c increases in a parabolic manner 
with W. 

2. The K~ c values obtained from Jfc are higher than 
those from the ASTM formula. 

This may be due not only to the fact that the crack 
advancement is calculated at maximum load (with 
a/W = 0.5 the error is minimum), but also to the 
uncorrected use of Equation 6, strictly valid in the 
linear elastic range. 

Figure 1 Different sizes of  the tested specimens. 
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Figure 2 Different ratios between ductile and cleavage fracture 
when the specimen width varied. 



T A B  L E I I I E x p e r i m e n t a l  f r a c t u r e  m e c h a n i c s  p a r a m e t e r s  

W ( c m )  a /W J[c ( R i c e  et al. [17]) K/I c = (.]fEE) ]/2 K(I c ( A S T M )  A v e ,  

( k J m  -2 )  ( M N m  -3/2) ( M N m  3/2) 

0 .5  0.1 - - 2.61 2 .10  

0 .2  - - 2.03 

0.3 - - 2 .00  

0 .4  - - 1.95 

0.5 8 .54  3 .48 1.89 

1.0 0. I - -  - 2 .28 2 .48 

0 .2  - - 2 .57  

0.3 - - 2.59  

0 .4  - -  - 2 .66  

0.5 I 0 . 0 0  3.58 2 .32 

2 .0  0.1 - - 3.05 3 .15 

0 .2  - - 3.22 

0.3 - - 3 .26 

0 .4  - - 3.25 

0 .5  10.63 3.88 2 .98 

4 .0  0.1 - -  - -  3 .62 3.63 

0 .2  - - -  3.73 

0.3 - - 3.78 

0 .4  - - 3.63 

0.5 14.40 4.51 3.41 

8 .0  O. 1 - - 4 .39  4 .50  

0 .2  - -  - 4.73 

0.3 - - 4.71 

0 .4  - -  - 4.41 

0 .5  23 .37  5.75 4.26  

12.0 0.1 - -  - 5.33 5 .19 

0 .2  - - -  5.41 

0 .3  - -  - 5.35 

0 .4  - - -  5.01 

0.5  30.17 6.53 4 .83 

3. Size scale t rans i t ion  f rom plastic 
f l o w  col lapse to br i t t le  crack 
propagat ion  

Owing to the different physical dimensions of strength 
[FL -2] and fracture toughness [FL-3/2], scale effects 
are always present in the usual fracture testing of 
common engineering materials. This means that for 
the usual size of the laboratory specimens, the ulti- 
mate strength collapse or the plastic collapse at the 
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ligament tends to anticipate the real crack propaga- 
tion collapse [15]. Such competition between collapses 
of a different nature can be easily proved by consider- 
ing the ASTM formula for the three-point bending 
test evaluation of fracture toughness [16]: 

PL 
K I = Bw-~f(a/W ) ( 7 a )  

Under crack propagation conditions, Equation 7a 

13 

I I I I t 

4 6 8 10 12 

S P E C I M E N  W I D T H  , W ( c m )  

Figure 3 F r a c t u r e  t o u g h n e s s  K[c p l o t t e d  a g a i n s t  

s p e c i m e n  w i d t h  W. ([3) R i c e  et al. [17], ( o )  [16]. 
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Figure 4 Interaction between crack propagation 
and plastic hinge formation at the ligament. - -  
Plastic flow collapse (elastic perfectly plastic 
material); ..... ultimate strength collapse (elastic- 
brittle material), s = Kic/O'y W 1/2. 

becomes: 

PvL 
Klc = B---W- ~ f ( a / W )  (7b) 

where Pv is the external load of brittle fracture. If  both 
members of Equation 7b are divided by Oy W 1/2 we 

obtain: 

Klc PvL a W) 
- s - a y ~ 2 f ( /  (8) o - y W  I/2 

where s is a dimensionless number able to describe the 
brittleness of  the specimen. 

Rearranging Equation 8 gives: 

PvL s 
- ( 9 )  

o'ynW 2 f ( a / W )  

On the other hand, it is possible to consider the non- 
dimensionless load of plastic hinge formation at the 
ligament: 

PvL = ( 1 _ _ _ ~ )  2 (10) 
ayBW 2 

Equations 9 and 10 are plotted in Fig. 4 as functions 
of the crack depth a~ W. While the former produces a 
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family of curves by varying the brittleness number s, 
the latter is represented by a unique curve. It is easy to 
realize that plastic collapse precedes crack propaga- 
tion for each crack depth when the brittleness number 
is higher than the critical value So = 0.75. For lower 
values o f  s plastic collapse anticipates crack propaga- 
tion only for crack depths external to a certain inter- 
val. This means that real fracture phenomena occur 
only for sufficiently low fracture toughnesses, high 
yield strengths and/or large structural sizes. The indi- 
vidual values of Klc, O-y and W are of no significance. 
What is important is their function s. 

Recalling Equations 9 and 10, we can obtain the 
ratio between fictitious and real fracture toughness, 
which is equal to the ratio between load of plastic 
collapse, Iv ,  and load of crack propagation, PF, when 
Pp < Pv, and equal to unity when Pv > PF: 

= ~ ( a ~ )  ~ I~ic P--Y-P = 1 -- f ( a /gO for Pp < PF 
Klc PF 

(1 la) 

- -  = 1 for Pp > PF ( l lb)  
Kic 

Combining the definitions of brittleness number, 



,,__o 1.2 

d ffl 

~ 1.0 

~" 0.8 

o 0.6 

o4 
0 

~ 0.2 

0.0 

s :0 .3  ~ Limit 
" �9 V A n a l y s i  s 

\ 
, s=O,1 

z I I I 
0,0 0.2 0.4 0.6 0.8 1.0 

C R A C K  D E P T H ,  o/W 

Figure5 Fictitious fracture toughness plotted 
against crack depth. W = (e) I cm; (o) 2 cm; (A) 
4cm; (z~) 8cm; ([3) 12cm. 

Equations 8 and 11, we obtain: which the fracture curve s = So is tangent to the plas- 
tic flow curve in Fig. 4. More precisely, for s > So 

K~ic ( 1 - - ~ ) 2 f ( a / W )  for Pp < PF Equation 12a is valid for each crack depth a/W, 
O'y W I/2 - -  whereas for s < So Equation 12a is valid for external 

(12a) crack depths and Equation 12b for central crack 
K~c depths. Equation 12a is also represented in Fig. 6 by 

ay W ~/2 = s for Pp > PF (12b) varying the specimen depth W. The dark shaded area 
is where the curves a / W  = 0.1 to a / W  = 0.5 are con- 

Equation 12a is represented in Fig. 5 as a bell-shaped centrated. It is a very narrow strip, especially for 
curve vanishing for a~ W = 0 and a / W  = 1. It pre- smaller values of  W. 
sents a maximum for that value of  a crack depth for When s > So, the parabola (Equation 12a) is 

10 Kic = 5 . 5 M N  m "~ ( a s s u m e d  f r a c t u r e  
tu 
z | t o u g h n e s s  f o r B C S  m o d e l )  

0 I _l I I, I I 

IE 

' 4 - - - -  

L i m i t  Analys is  

B C S model  

0 2 4 6 8 10 12 
S P E C I M E N  W I D T H  , W ( c m )  

Figure 6 Fictitious fracture toughness plotted against specimen width. 
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replaced by the horizontal straight line/~Jc = K~c. The 
experimental points present a course which is only 
initially similar to that of Equation 12a. This means 
that, only for small specimens (W = 0.5, 1.0 or 
2.0cm) the collapse can be exactly described by a 
plastic flow at the ligament. 

By increasing the size scale a transition from plastic 
flow occurs towards a true LEFM collapse. For 
W = 12cm, however, the latter has not yet been 
reached, since the experimental points are still ascend- 
ing. It is difficult to predict the true value of fracture 
toughness exactly. On the other hand, if experimental 
work was carried out on larger specimens, it would be 
possible to standardize an extrapolation technique 
with a smaller number of specimens. An attempt is 
made to describe the ductile-brittle transition through 
the BCS-cohesive crack model [18]. 

The following expression for the fictitious fracture 
toughness is assumed: 

g~l C -~- of  (rca)'/2F(a/W) (13) 

where ar is the nominal stress at failure and F is the 
shape-function in the Tada-Paris  notation [19]. If  we 
recall the equivalence: 

2f(a/W) 
r ( a / W )  = 3(r~a/W),/2 (14) 

between the Tada-Paris function and the ASTM func- 
tion, the BCS fracture toughness: 

K(ic = (rca)mF(a/W) 2 -~ ay 

{ f. x cos-' exp - L8aZyaF(a/W)_lj (15) 

is transformed as follows: 

<c 4 
= ~ f ( a / W )  cos -J exp 32f2(a/W ) Cry W 1/2 

(16) 

Equation 16 is plotted in Fig. 5 as a function of crack 
depth a~ W and varying the brittleness number s. The 
experimental points are on the limit analysis curve for 
W = 1 and 2 cm, whereas they fall below it for larger 
specimens. 

Equation 16 is also represented in Fig. 6. According 
to the BCS model it is necessary to assume a true K~c 

value to be inserted into Equation 16. The value 
Klc = 5.5 MN m -3/2 is that which best fits the experi- 
mental results. 

The family of curves a /W = 0.1 to a /W = 0.5 is 
more spread for small than for large sizes in this case. 
The opposite occurs for the limit analysis prediction. 
It is very clear from Fig. 6 that a simple plastic col- 
lapse at the ligament occurred for small size scales 
(W = 0.5, 1~0, 2.0cm), whereas the transition from 
plastic collapse to brittle fracture is satisfactorily cap- 
tured by the BCS model, especially for shallow cracks 
(W = 4.0, 8.0 cm). 
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